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Abstract: - In this paper, the Euler and Navier-Stokes equations are solved, according to a finite volume
formulation and symmetrical structured discretization, applied to the problem of a blunt body in two-
dimensions. The work of Gaitonde is the reference one to present the fluid dynamics and Maxwell equations of
electromagnetism based on a conservative and finite volume formalisms. The MacCormack and the Jameson
and Mavriplis symmetrical schemes are applied to solve the conserved equations. Two types of numerical
dissipation models are applied, namely: Mavriplis and Azevedo. A spatially variable time step procedure is
employed aiming to accelerate the convergence of the numerical schemes to the steady state solution. The
results have proved that, when the Jameson and Mavriplis scheme is employed, an increase in the shock
standoff distance is observed, which guarantees a minor increase in the temperature at the blunt body nose, and
a minor increase in the drag aerodynamic coefficient.
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1 Introduction known to not only reduce drag on the body but also
The effects associated with the interaction of to provide thermal protection ([6]).

magnetic forces with conducting fluid flows have In addition to daunting engineering challenges,
been profitably employed in several applications some of the phenomena supporting the feasibility of
related to nuclear and other ([1]) technologies and an AJAX type vehicle are fraught with controversy
are known to be essential in the explanation of (see, for example, [7]). Resolution of these issues
astrophysical phenomena. In recent years, however, will require extensive experimentation as well as
the study of these interactions has received fresh simulation. The latter approach requires integration
impetus in the effort to solve the problems of high of several disciplines, including fluid dynamics,
drag and thermal loads encountered in hypersonic elect_romagnetlcs, chemical kl_netlcs and mo!ecular
flight. The knowledge that electrical and magnetic physics amongst others. This paper describes a
forces can have profound influence on hypersonic recent effort to integrate the first two of these,
flowfields is not new ([2] and [3]) — note increased Wlthl_n the assumptions that_ characterize ideal and
shock-standoff and reduced heat transfer rates in non-ideal magnetogasdynamics. _
hypersonic flows past blunt bodies under the In this paper, the Euler and Navier-Stokes
application of appropriate magnetic fields. The equations are solved, according toa finite volume
recent interest stems, however, from new revelations formulation ~ and  symmetrical ~ structured
of a Russian concept vehicle, known as the AJAX discretization, applied to the problem of a blunt
([4]), which made extensive reference to body in two-dimensions. The wqu of [8]. is the
technologies requiring tight coupling between reference one 'to present the fIU|d.dynam|cs and
electromagnetic and fluid dynamic phenomena. A Maxwell equations of electromagnetism based on a
magnetogasdynamics (MGD)  generator ~ was conservative and flnlte_volume formalisms. The [9]
proposed ([5]) to extract energy from the incoming and the [10] symmetrical schemes are applied to
air while simultaneously providing more benign solve the conserved equations. Two types of
flow to the combustion components downstream. numerical dissipation models are applied, namely:
The extracted energy could then be employed to [11] and [12]. A spatially variable time step
increase thrust by MGD pumping of the flow exiting procedure is employed aiming to accelerate the
the nozzle or to assist in the generation of a plasma convergence of the numerical schemes to the steady
for injection of the body. This latter technique is state  solution. Effective gains in terms of
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convergence acceleration are observed with this
technique [13-14].

The results have proved that, when the [10]
scheme is employed with the [11] dissipation
operator, an increase in the shock standoff distance
is observed, which guarantees a minor increase in
the temperature at the blunt body nose (minor
armour problems), and a minor increase in the drag
aerodynamic coefficient.

2 Formulation to a Flow Submitted to

a Magnetic Field

The Navier-Stokes equations to a flow submitted to
a magnetic field in a perfect gas formulation are
implemented on a finite volume context and two-
dimensional space. The Euler equations are obtained
by disregarding of the viscous vectors. These
equations in integral and conservative forms can be
expressed by:

2 [Qav+[Fends=0, (1)
ay~

with: F =(E, -E, )i +(F, - F,)] , (1b)

where: Q is the vector of conserved variables, V is

the computational cell volume, F is the complete
flux vector, N is the unity vector normal to the flux
face, S is the flux area, E. and F, are the convective
flux vectors or the Euler flux vectors considering the
contribution of the magnetic field in the x and y
directions, respectively, and E, and F, are the
viscous flux vectors considering the contribution of

the magnetic field in the x and y directions,
respectively. The unity vectors i and ] define the

system of Cartesian coordinates. The vectors Q, E.,
Fe, Ey and F, can be defined, according to [8], as
follows:

p pu
pu pu’ +P—R, B /uy
v | puw-R, BB, /uy
Oz [ T T oz + PRV o Bl B, [
B, 0
B, uB, —vB,

(2a)
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ez 2o

0

puv—R,

; (2b)

and

©)

in which: p is the fluid density; u and v are the
Cartesian components of the velocity vector in the x
and y directions, respectively; Z is the flow total
energy considering the contribution of the magnetic
field; B, and B, are the Cartesian components of the
magnetic field vector active in the x and y
directions, respectively; P is the pressure term
considering the magnetic field effect; Ry is the
magnetic force number or the pressure number; Ly
is the mean magnetic permeability, with the value

4mx107 T.m/A to the atmospheric air; V is the flow

velocity vector in Cartesian coordinates; B is the
magnetic field vector in Cartesian coordinates; the
T’s are the components of the viscous stress tensor
defined at the Cartesian plane; qx and g, are the
components of the Fourier heat flux vector in the x
and y directions, respectively; q;x and q,, are the
components of the Joule heat flux vector in the x
and y directions, respectively; Re, is the magnetic
Reynolds number; and o is the electrical
conductivity.

The viscous stresses, in N/m? are determined,
according to a Newtonian fluid model, by:

ou 2 (ou ov ou ov
1'XX=2,u———,u &-F@ ,z'xyz,u 54‘& ,(4a)
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T, =2 (4b)

w2 fa
w =25, gk

3
_+_ ,
ox oy

where p is the fluid molecular viscosity. In this
work, the empiric formula of Sutherland was
employed to the calculation of the molecular
viscosity (details in [15]).

Z is the total energy defined by:

2 2 2 2 2
Z:eru+v+RbB:p+u+v
(-1p 2 2uyp (-1p 2

B2 + B2
+R, —( X y). ®)
2upp
The pressure term is expressed by:
2 B2 + B2
P=p+R, B =p+Rb(X—y). (6)
2y 2y

The magnetic force number or pressure number is
determined by:

2 B2 +B:
R, = E;‘” = ( X2'°° 5 y’°°) . (7
poovooluM,w poo(uoc—'_voo)luM,oo
The laminar Reynolds number is defined by:
Re = P=Vl , 8)
Mo

in which “w0” represents freestream properties, V.,

represents the characteristic flow velocity and L is a

characteristic length of the studied configuration.
The magnetic Reynolds number is calculated by:

Rea = LVoo:uM,ooo-oo ' (9)

The components of the Fourier heat flux vector are
expressed by:

S S or and

(10)
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Pr=u,Cp/k = 0.72, is the laminar Prandtl
number; (11)

Vv
M, = —==

“ ol
(12)

y is the ratio of specific heats to a perfect gas,
with a value of 1.4 to atmospheric air.

, is the freestream Mach number;

The components of the Joule heat flux vector,
which characterizes the non-ideal formulation, are
determined by:

B, [ 5(B
qJ,x:_& il —ﬁ( BXJ and
R, [umo| ox\uy ) Oy uy

3 [9] Structured Algorithm in Two-

Dimensions
Employing finite volumes and applying the Green
theorem to Eq. (1), one writes:

oQ j /ot =-1V; L ('E . ﬁ)i,j ds; ;.

In the discretization of the surface integral, Eq. (14)
can be rewritten as:

dQ j/dt=-1V; ; [('E * §)I,j—l/2 +(ﬁ * §}+l/2,j +

(14)

('E ° §},j+l/2 +(|E '§)|—1/2,j J (15)
Discretizing Equation (15) in time employing the
explicit Euler method, results in:

n+l

i zQir,]j _Ati,j/vi,j [(F'S)i,j—llz +(F 'S)i+1/2,j +

(F 'S)i,j+1/2 + (F : S)i—llz,j ]n : (16)

The time integration is now divided in two steps:
one predictor and another corrector. In the predictor
step, the convective flux terms are calculated using
the properties of the forward cell in relation to the
flux interface. The viscous terms are discretized in a
symmetrical form. In the corrector step, the
properties of the backward cell in relation to the flux
interface are employed. The viscous terms are again
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calculated in a symmetrical form. With this
procedure, the scheme is of second order accuracy
in space and time. Hence, the [9] algorithm, based
on a finite volume formulation, is described as
follows:

Predictor step:

AQn+l _At| j/\/lj {[ Ij 1/2]S><i,j—1/2

+|_(Fe Ij 1/2JSy. i-1/2 +l( )|+1J ( v)|+1/2,jJsxi+1/2,j
|.(Fe |+1J |+l/2j}sy|+1/zj +|. i, ]+1 V i,j+1l2Jin,j+l/2

[(Fe)l j+ ( Ij+l/2JSY|]+1/2 +I(Ee) ( v)—1/2,jJin—1/2,J'

23 0 W (5 W S an

Ql; + AQ.”,”;

+

+

Qn+l (18)

Corrector step:
AQM:_MIJ/VIJ{[ |11

+|_( ) ( |,j—1/2sziyj71/2 +|,( e |+1/2 j JSX|+1/2]
[( ) (F |+1/2,j}SYi+1/2,j +|.( e) _( v Ij+l/2JSXI j+1r2
l( e)i,j _( v i,j+1/2JSyi,j+1/2 [( e)-u ( )—1/2,jJin—1/2,j

(RS WP S (19)

an]+1 =05( " +Qn+l+AQn+l).

)i,j—llz]sxi,j—1/2

(20)

With the intent of guaranteeing numerical stability
to the [9] scheme, in its two-dimensional version, an
artificial dissipation operator of second and fourth
differences ([16-17]) is subtracted from the flux
terms of the right side (RHS, “Right Hand Side”) in
the corrector step, aiming to eliminate instabilities
originated from shock waves and due to the field
stability. The operator is of the following type:

D;; =d® —d?, defined in subsection 4.1.

4 [10] Structured Algorithm in Two-

Dimensions
Equation (1) can be rewritten following a structured
spatial discretization context ([18] and [10]) as:

d(\/i,jQi,j)/dt+C(Qi,j)zos (21)
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where:

C(Q;;)=105|E.)
+P8|(F.) 5 +
+0.5((E, ),
+P8|(F.)
+{.5|(E. ),
+05|(F.), ; +
+{0.5)(E, )
+05|(F. ) + (R, ]

Ee)i,HJ—(EV)i,,-fl/z}sxi,,-_m
(Fo)al= (R sz 8, .
H(E)ay FE )z S,
+(Fe ) |-(F, )orsa; }Sme
HED, ) S,
(Fo) = (R sz S,
+(Ee )iy |-E, )iz }Sxifuz,j
F vz By,

(22)

is the approximation to the flux integral of Eq. (1).
In this work, one adopts that, for example, the flux
vector E. at the flux interface (i,j-1/2) is obtained by
the arithmetical average between the E. vector
calculated at the cell (i,j) and the E. vector
calculated at the cell (i,j-1). The viscous flux vectors
are calculated in a symmetrical form as
demonstrated in section 5.

The spatial discretization proposed by the
authors is equivalent to a symmetrical scheme with
second order accuracy, on a finite difference
context. The introduction of an artificial dissipation
operator “D” is necessary to guarantee the scheme
numerical stability in presence of, for example,
uncoupled odd/even solutions and non-linear
stabilities, as shock waves. Equation (21) can, so, be
rewritten as:

dv;;Q;,; Jdt+[c@,)-D@ )|=0.  (23)

The time integration is performed by a hybrid
Runge-Kutta method of five stages, with second
order accuracy, and can be represented in general
form as:

QU = QW
' =Qf ~a Ati,J/Vi,j[C( i(,lﬁ_l))— D( (m))] (24)

(n+1) _ ~(k)
ij — i, j
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where: k =1,...,5; m = 0 until 4; oy = 1/4, o, = 1/6,
asz = 3/8, ay = 1/2 and as = 1. [10] suggest that the
artificial dissipation operator should be evaluated
only in the first two stages as the Euler equations
were solved (m =0, k=21and m=1, k = 2). [19]
suggest that the artificial dissipation operator should
be evaluated in alternated stages as the Navier-
Stokes equations were solved (m=0, k=1, m =2,
k =3 and m = 4, k =5). These procedures aim CPU
time economy and also better damping of the
numerical instabilities originated from the
discretization  based on  the  hyperbolic
characteristics of the Euler equations and the
hyperbolic/parabolic characteristics of the Navier-
Stokes equations.

4.1 Artificial dissipation operator

The artificial dissipation operator implemented
in the [9] and in the [10] schemes has the
following structure:

D(Q,)=d?@Q,)-d“@Q,). (25)

where:
49(Q,;)=0562 (A + A1) —Q)
+05:2, (A, + A, Qs - Q)
105621, (A + A LR~ Q)

+05:%,, (A, +Ax NQa, -Q)
(26)

named undivided Laplacian operator, is responsible
by the numerical stability in the presence of shock
waves; and

d9(Q;)=056,,, (A +A, 1 JV?Q, 4 -V7Q,)
+0-58i(f1)/2,j(Ai,j +Ai+1,jXV2Qi+1,j _szi,j)
+O'58i(,4j)+1/2(A,j + Ai,j+lXV2Qi,j+1_V2Qi,j)

+0-53i(f1)/2,j(A,j + ’I'\—LJXVZQi—LJ’ _VZQU )’

(27)
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named bi-harmonic operator, is responsible by the
background stability (for example: instabilities
originated from uncoupled odd/even solutions). In
this last term,

VZQi,j :(Qi,j—l _Qi,j)+(Qi+1,j _Qi,j)
+(Qi,j+l -Qi; )+(Qi—l,j -Qi; ) (28)

In the d operator, V?Q, ; is extrapolated from the

value of the real neighbor cell every time that it
represent a ghost cell. The ¢ terms are defined, for
example, as:

6@ =MAX [0,(K® =22, ) (29)
with:

Piss,j ~ pi,j‘+‘pi,j+1_ pi,j‘J"piij - pi,i‘)/

:qpi,j—l_pi,j‘+
(pi,j—l *+ Pisgj T Pija T Piyj +4pi,j) (30)

representing a pressure sensor employed to identify
regions of elevated gradients. The K@ and K®
constants has typical values of 1/4 and 3/256,
respectively. Every time that a neighbor cell
represents a ghost cell, one assumes, for example,

that vy, =V;j. The Ay terms can be defined

according to two models implemented in this work:
(@) [11] and (b) [12]. In the first case, the A;; terms
are contributions from the maximum normal
eigenvalue of the Euler equations integrated along
each cell face. Hence, they are defined as follows:

(a) [11] model:

|

ho 5u j + U515, + 050 +Vi54)8

Yi,j-12

+05a +a,11XS2 )0'5+

Jji-1/2 y, j-1/2

|

I‘O S + Ui, j )anl/z +0. 5(V Vi, j )Syi+1/z.j

S2 482 )O'5+

i+1,§ A\ X412, Yiai/2,j

+05(a +q

(31a)
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|

“O.S(Ui i+

uivj+1)sxi,j+1/z +0. 5(\/ + V' J+1)Syi,j+1/2

0.5
+05(,, +a,,., )52 +s2  fo4
| j+1/2 yl‘j+l/2

i,j+1

|

“O.S(Ui'j +Ujg )SXFMJ. + 0-5(Vi,j Vi )Syi,uz.;

+05(a,; +a; ISz, +s2,, f°. ()
where “a@” represents the sound speed.
(b) [12] model:
Ai,j :Vi,j/Ati,j ' (32)

which represents a scaling factor, according to
structured meshes, with the desired behavior to the
artificial dissipation term: (i) bigger control volumes
result in bigger value to the dissipation term; (ii)
smaller time steps also result in bigger values to the
scaling term.

5 Calculations of the Viscous

Gradients

The viscous vectors at the flux interface are
obtained by the arithmetical average between the
primitive variables at the right and left states of the
flux interface, as also the arithmetical average of the
primitive variable gradients, also considering the
right and left states of the flux interface. The
gradients of the primitive variables present in the
viscous flux vectors are calculated employing the
Green theorem, which considers that the gradient of
a primitive variable is constant in the volume and
that the volume integral which defines this gradient
is replaced by a surface integral. This methodology
to calculation of the viscous gradients is based on
the work of [20]. As an example, one has to du/ox :

_Z_J'_ v—_iu(ﬁ.d§)=

\% jude =

X

i|:o'5(ui,j +ui,j_1)sxi,j—1/2 +O'5(uivj +ui+1vj)sxi+1/2,j

i
+ ui*l,j )Sxi,l/z‘j J

(33)

+05(u; ; +U; )8, ., +05(u;

E-ISSN: 2224-347X

28

Edisson Savio De Gdées Maciel

The dimensionless employed in the Euler and
Navier-Stokes equations, the boundary conditions,
the geometry configuration and the employed
meshes are presented in [21].

6 Dimensionless, Initial and Boundary
Conditions, Computational Domain
and Employed Meshes

6.1 Dimensionless

The dimensionless employed to the case of the
flowfield submitted to a magnetic field in two-
dimensions are detailed as follows: p is
dimensionless in relation to p,; the u and v
Cartesian components of velocity are dimensionless
in relation to the freestream speed of sound, a,; p is
dimensionless in relation to the product between p.,
and the squared of a.; the translational/rotational
temperature is dimensionless in relation to a,; the
molecular viscosity is dimensionless in relation to
L., the Cartesian components of the induced
magnetic field is dimensionless by B.,; the magnetic

permeability of the mean is dimensionless by w, .
and the electric conductivity is dimensionless by o...

6.2 Initial and boundary conditions

6.2.1 Initial condition

The initial condition adopts freestream flow
properties to the conserved variables. Due to the
present dimensionless, the vector of conserved
variables in the field is determined as follows:

1.0
M, cosO
M_sin®
Q=1_1 . 05M2+05R,[’

y(y-1)
B,. /B,

B,../B,

(34)

where 0 is the angle of attack, M., is the freestream
Mach number, By,., By., B. are the Cartesian
components of the induced magnetic field and the
modulus of the induced magnetic field, and R, is
calculated according to Eq. (7).

6.2.2 Boundary conditions

The boundary conditions are basically of three
types: solid wall, entrance and exit. These
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conditions are implemented in special cells named
“ghost cells”.

(a) Solid wall condition: In the inviscid case, this
condition imposes the flow tangency at wall. This
condition is satisfied considering the velocity
component tangent to the wall relative to the ghost
cell as equal to the respective component of the real
neighbor cell. At the same time, the velocity
component normal to the wall relative to the ghost
cell is equaled to the negative of the respective
component of the real neighbor cell. This procedure
leads to a system of equations which results to:

o =0 —n2h +

Vg (2nn

—2n,n, and

2
(x n)«r,

where “g” indicate ghost cell properties and “r”
indicate real cell properties. In the viscous case, the
Cartesian components of the velocity vector of the
ghost cells are equaled in value, but with the
opposed signal, with the respective Cartesian
components of the real cell.

(35)

Ug =—U,

and vy =-v,. (36)
In both cases, inviscid and viscous, the pressure
gradient normal to the wall is equaled to zero,
according to an inviscid formulation in the former
case and to the boundary layer condition in the
latter. The same hypothesis is employed to the
temperature gradient normal to the wall, considering
an adiabatic wall. With these conditions, ghost cell
density and pressure are extrapolated from the
respective values of the real neighbor cell (zero
order extrapolation).

The Cartesian components of the induced
magnetic field at the wall to the ghost cells are fixed
with their initial values. The magnetic permeability
is considered constant with its initial value. The
total energy Z to the ghost cell is calculated by:

BZ, + B/,
“’M,gpg .
(37)

zng

° (y-1p,

+05(u? +v2)+05R,

(b) Entrance condition:

(b.1) Subsonic flow: Five properties are specified
and one is extrapolated, based on the analysis of
information propagation along the characteristic
directions in the calculation domain ([21]). In other
words, five characteristic directions of information
propagation points to inside the computational
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domain and should be specified, to the subsonic
flow. Only the characteristic direction associated
with the “(q,-a)” eigenvalue cannot be specified and
should be determined by interior information of the
calculation domain. The pressure is the extrapolated
variable from the real neighbor cell. Density,
Cartesian velocity components and Cartesian
induced magnetic field components have their
values determined by the initial condition. The total
energy is determined by Eqg. (37).

(b.2) Supersonic flow: All variables are fixed with
their initial values.

(c) Exit condition:

(c.1) Subsonic flow: Five characteristic directions of
information propagation points outward from the
computational domain and should be extrapolated
from the interior information. The characteristic
direction associated with the eigenvalue “(q,-a)”
should be specified because points inward the
calculation domain ([21]). In this case, the ghost cell
pressure is specified by its initial value. Density,
Cartesian velocity components and Cartesian
induced magnetic field components are extrapolated
and the total energy is determined by Eq. (37).

(c.2) Supersonic flow: All variables are extrapolated
from the interior domain due to the fact that all six
characteristic directions of information propagation
of the Euler equations point outward from the
calculation domain and, with it, nothing can be
fixed.

6.3 Computational domain

Entrance

Exit

Wall

Exit

Figure 1 : Blunt body computational domain.

Figure 1 presents the geometry and the
computational domain employed in the structured
simulations in  two-dimensions. This figure
describes a blunt body with nose ratio of 1.0m and
the far field located at twenty times the nose ratio in
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relation to the configuration nose. The domain
presents three frontiers, as related in the boundary
conditions, namely: solid wall, entrance and exit.

6.4 Employed meshes

Figures 2 and 3 present the meshes employed to
the structured simulations in two-dimensions
for the case of a flow submitted to an induced
magnetic field around a blunt body.
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Figure 3 : Structured mesh to the viscous 2D case.

Figure 2 exhibits the mesh used to the inviscid
simulations and Fig. 3 the mesh to the viscous
simulations. The mesh to the viscous case
presents an exponential stretching in the n
direction of 7.5%. The mesh to the inviscid case
is composed of 3,658 rectangular cells and
3,780 nodes, which corresponds to a finite
difference mesh of 63x60 points. The mesh to
the viscous case is composed by the same
number of cells and nodes, also corresponding
to a mesh of 63x60 points.
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7 Results

Tests were performed in three microcomputers: one
with processor INTEL CELERON, 1.5GHz of clock
and 1.0GBytes of RAM (notebook), the second with
processor AMD SEMPRON (tm) 2600+, 1.83GHz
of clock and 512 Mbytes of RAM (desktop), and the
third one with processor INTEL CELERON
2.13GHz of clock and 1.0GBytes of RAM
(notebook). As the interest of this work is steady
state problems, one needs to define a criterion which
guarantees that such condition was reached. The
criterion adopted in this work was to consider a
reduction of no minimal three (3) orders in the
magnitude of the maximum residual in the domain,
a typical criterion in the CFD community. The
residual to each cell was defined as the numerical
value obtained from the discretized conservation
equations. As there are six (6) conservation
equations to each cell, the maximum value obtained
from these equations is defined as the residual of
this cell. Thus, this residual is compared with the
residual of the other cells, calculated of the same
way, to define the maximum residual in the domain.
In the simulations, the attack angle, o, was set equal
to zero.

7.1 Initial conditions

The initial conditions to the standard simulation of
the studied algorithms are presented in Tab. 1. This
is a standard case to the ideal gas flow submitted to
a magnetic field normal to the symmetry line of the
configuration under study. The Reynolds number
was calculated from the data of [22].

Table 1 : Initial conditions of the simulations in 2D.

Property Value
M., 10.6
By 015T
Y 1.2566x10° T.m/A
Gw 1,000 ohm/m
Altitude 40,000 m
Pr 0.72
L (2D) 2.0m
Re., (2D) 1.6806x10°

7.2. Numerical results

7.2.1 Grid independent solution

Before start the presentation of the results, a
computational grid independence study was
performed. Four different meshes were
analyzed: 43x40, 53x50, 63x60 and 73x70. The
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reference parameter chosen to indicate grid
independent solution was the —Cp distribution
around the blunt body, considering the inviscid
case. The scheme to determine this solution was
the [9] one and the [11] artificial dissipation
operator was employed. The studied meshes are
presented in Figs. 4 to 7 and the -Cp
distributions are presented in Fig. 8.

PRI | i M 1 an
40 -1 [X] 10 40
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Figure 5 : Mesh of 53x50 points.

It is clear from Fig. 8 that the grid dependent
solution is obtained with mesh 63x60. The
differences between meshes 63x60 and 73x70 are
minimal. So, the mesh of 63x60 points was chose
for the numerical experiments performed in this
work. To the viscous experiments, it was employed
the same mesh, with the exponential stretching
referred in section 6.4.
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Figure 8 : -Cp distributions — Grid independent solution.

7.2.2 Results with the [9] scheme to inviscid flow
in two-dimensions

Figures 9 and 10 present the pressure contours
calculated at the computational domain to the ideal
gas flow, inviscid, submitted to a magnetic field.
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Figures 9 and 10 exhibit the solutions obtained with
the [9] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The
pressure field obtained by the [9] scheme employing
the dissipation model of [11] is more intense than
that obtained with the dissipation model of [12].
Good symmetry properties are observed in both
solutions.
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Figure 9 : Pressure contours (Mac/A).
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Figure 10 : Pressure contours (Mac/M).

Figures 11 and 12 show the Mach number
contours calculated at the computational domain by
the [9] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [9] scheme employing
the dissipation model of [11] is more intense. Good
symmetry properties are observed in both solutions.
The shock wave develops naturally, passing from a
normal shock at the symmetry line to oblique shock
waves along the body and finishing in a Mach wave,
far from the geometry.

Figures 13 and 14 present the translational /
rotational temperature distributions calculated at the
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computational domain. The [9] scheme with the
artificial dissipation model of [12] predicts a more
severe temperature field.
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Figure 11 : Mach number contours (Mac/A).
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Figure 13 : Temperature contours (Mac/A).

Figures 15 and 16 exhibit the contours of the By
component of the magnetic field vector determined
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at the calculation domain. As can be observed, the
B, component is negative at the geometry lower .

surface and positive at the geometry upper surface, mz— Bx
indicating that the magnetic field performs a curve wf M 3Z
around the geometry. The solution presented by the b [ 334
[9] scheme with the dissipation model of [11] is L ea
quantitatively more symmetrical than the respective HE O ;;.i"
one obtained with the dissipation model of [12], - wF B
although the latter presents a more intense By L [ 3';
component field. =
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Figures 17 and 18 exhibit the magnetic vector b
field with induction lines to highlight the satisfied Y
initial condition far ahead of the configuration and P T ,
the distortion in these lines close to the blunt bodly. s =

As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration.

Figure 18 : Magnetic field and induction lines (Mac/M).
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Figure 19 : -Cp distributions.

Figure 19 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
by the [9] scheme employing the dissipation model
of [11] is more severe than that obtained with the
dissipation model of [12], presenting a Cp peak at
the configuration nose bigger. Figure 20 presents the
distribution of the translational / rotational
temperature along the configuration symmetry line
or configuration stagnation line. As can be noted,
the dissipation models predict different shock wave
positions. The [12] model predicts the shock wave
at 1.85m ahead of the blunt body nose, while the
[11] model predicts the shock wave at 1.55m ahead
of the blunt body nose.
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Figure 20 : Shock position by the temperature profile.

7.2.3 Results with the [9] scheme to viscous flow
in two-dimensions

Figures 21 and 22 exhibit the pressure contours
calculated at the computational domain. The
pressure field obtained by the [9] scheme employing
the dissipation model of [12] is more intense than
that obtained with the dissipation model of [11],
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with a behavior opposed to that observed in the
inviscid solution. Good symmetry properties are
observed in both solutions.
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Figure 21 : Pressure contours (Mac/A).
40f Fr
: =3 88
ol . 53268
b ease
1of | s0o0
P 733
Lof | 85876
E o s0.4
= MOE ] B35
F o 4553
Lo ] 4o
Fo 3354
W = e ]
r 20345
iy I 1276
F T
-‘..{I:— 14
RPN I AN I SR BTN AN BT A !
40
X
Figure 22 : Pressure contours (Mac/M).
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Figure 23 : Mach number contours (Mac/A).

Figures 23 and 24 show the Mach number
contours calculated at the computational domain by
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the [9] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [9] scheme employing
the dissipation model of [11] is more intense. It is
important to note that both solutions present pre-
shock oscillation problems, being more critical
those observed in the solution with [11] model.
Good symmetry properties are observed in both
solutions.
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Figure 24 : Mach number contours (Mac/M).
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Figure 25 : Temperature contours (Mac/A).

Figures 25 and 26 present the translational /
rotational temperature distributions calculated at the
computational domain. The [9] scheme with the
artificial dissipation model of [12] predicts a more
severe temperature field. This temperature field is
much more severe than that obtained by the inviscid
solution. The temperature peak occurs along the
rectilinear walls, by the development of the wall
heating due to the consideration of viscous effects.

Figures 27 and 28 exhibit the contours of the B,
component of the magnetic field vector determined
at the calculation domain. As can be observed, the
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B, component is negative at the geometry lower
surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
around the geometry. The solutions presented by the
[9] scheme with the dissipation models of [12] and
of [11] have meaningful numerical non-symmetry.
The dissipation model of [12] presents a By field
more intense.
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Figure 26 : Temperature contours (Mac/M).
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Figure 27 : B, component of magnetic field (Mac/A).

Figures 29 and 30 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration.

Figure 31 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
by the [9] scheme employing the dissipation model
of [11] is more severe than that obtained with the
dissipation model of [12], presenting a Cp variation
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between the configuration nose and the

configuration rectilinear walls bigger.
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Figura 30 : Magnetic field and induction lines (Mac/M).

Figure 32 presents the distribution of the
translational / rotational temperature along the
configuration symmetry line or configuration
stagnation line. As can be noted, the dissipation
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models predict different shock wave positions. The
[12] model predicts the shock wave at 0.90m ahead
of the blunt body nose, while the [11] model
predicts the shock wave at 0.80m ahead of the blunt
body nose.
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Figure 32 : Shock position by the temperature profile.

7.2.4 Results with the [10] scheme to inviscid flow
in two-dimensions

Figure 33 and 34 present the pressure contours
calculated at the computational domain. The
pressure contours obtained by the [10] scheme
employing the dissipation model of [11] is more
intense than that obtained with the dissipation model
of [12]. Good symmetry properties are observed in
both solutions.

Figures 35 and 36 exhibit the Mach number
contours calculated at the computational domain by
the [10] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [10] scheme
employing the dissipation model of [12] is more
intense. Good symmetry properties are observed in
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both solutions. The shock wave develops naturally,
passing from a normal shock (frontal) to a Mach

wave,
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Figure 33 : Pressure contours (JM/A).
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Figure 34 : Pressure contours (JM/M).
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Figure 35 : Mach number contours (JM/A).
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Figure 38 : Temperature contours (JM/M).

Figures 37 and 38 show the translational /
rotational temperature distributions calculated at the
computational domain. The [10] scheme with the
artificial dissipation model of [12] predicts a more
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severe temperature field. This field is, however,
inferior in intensity to the respective one calculated
by the [9] scheme, as seen in Fig. 13.
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Figure 39 : B, component of magnetic field (JM/A).
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Figure 40 : B, component of magnetic field (JM/M).

Figures 39 and 40 exhibit the contours of the B,
component of the magnetic field vector determined
at the calculation domain. As can be observed, the
B, component is negative at the geometry lower
surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
around the geometry, equally observed in the
solutions with the [9] scheme. The solutions
presented by the [10] scheme with the dissipation
models of [12] and of [11] have good symmetry
properties. The latter solution presents a By field
more intense.

Figures 41 and 42 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
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the blunt body walls and, close to the body, suffer
distortion, getting round the configuration. The
same behavior was observed in the inviscid
solutions obtained with the [9] scheme.
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Figure 42 : Magnetic field and induction lines (JM/M).
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Figure 43 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
by the [10] scheme employing both dissipation
models present the same intensity. Figure 44
presents the distribution of the translational /
rotational temperature along the configuration
symmetry line or configuration stagnation line. As
can be noted, the dissipation models predict
different shock wave positions. The [12] model
predicts the shock wave at 1.60m ahead of the blunt
body nose, while the [11] model predicts the shock
wave at 1.50m ahead of the blunt body nose.

Azevedo
WMaviiplis

: Tty- JM
= — == F Ti-Jm

sk )'
wnf
E J.(J

T QT R R T

X(m)
Figure 44 : Shock position by the temperature profile.
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7.2.5 Results with the [10] scheme to viscous flow
in two-dimensions
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Figure 45 : Pressure contours (JM/A).

Figures 45 and 46 present the pressure contours
calculated at the computational domain. The
pressure contours obtained by the [10] scheme
employing the dissipation model of [12] is more
intense than that obtained with the dissipation model
of [11], opposed to the behavior observed in the
inviscid solution. Good symmetry properties are
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observed in both solutions. This field is also more
intense than the respective one obtained with the [9]
scheme employing the same dissipation model.
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Figure 46 : Pressure contours (JM/M).
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Figure 47 : Mach number contours (JM/A).
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Figures 47 and 48 exhibit the Mach number
contours calculated at the computational domain by
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the [10] scheme employing the artificial dissipation
models of [12] and of [11], respectively. The Mach
number field obtained by the [10] scheme
employing the dissipation model of [12] is more
intense. It is important to note that both solutions
present problems of pre-shock oscillations, being
the [11] model solution as more critical. Good
symmetry properties are observed in both solutions.

Figures 49 and 50 show the translational /
rotational temperature distributions calculated at the
computational domain. The [10] scheme with the
artificial dissipation model of [12] predicts a more
severe temperature field, much more severe than the
respective one obtained with the [9] scheme. This
field is much more severe than that obtained with
the inviscid solution of the present scheme. The
temperature peak occurs along the rectilinear walls,
by the development of the heating of these by the
consideration of viscous effects.
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Figure 49 : Temperature contours (JM/A).

T
1435857
13453.20
1250642
11559.68
108612.30
960612
B719.28
TTIT2.60
682582
5BT9.08
493229
398552
038.TE
2091.99
114523

4.0

kXS

10|

Lo

TN T N T TN TN T N T T T T N . -5 T N1
-La [T] 18 40

b
=

X
Figure 50 : Temperature contours (JM/M).

Figures 51 and 52 exhibit the contours of the By
component of the magnetic field vector determined
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at the calculation domain. As can be observed, the
B, component is negative at the geometry lower
surface and positive at the geometry upper surface,
indicating that the magnetic field performs a curve
around the geometry. The solutions presented by the
[10] scheme with the dissipation models of [12] and
of [11] have meaningful symmetry properties. The
dissipation model of [12] presents a By field more
intense.

40 Bx é/‘
3.61
0 3.05
= o=z
10 — 208
L1 155
10 — 102
— 0.52
- [N] g
— -0.E2
Y S I gy
155
anfk L 5o
258
=2 I 3.9
48 28
PR [ T T T T N TR O
Y KX

Figure 51 : B, component of magnetic field (JM/A).
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Figure 52 : B, component of magnetic field (JM/M).

Figures 53 and 54 exhibit the magnetic vector
field with induction lines to highlight the satisfied
initial condition far ahead of the configuration and
the distortion in these lines close to the blunt body.
As can be observed, the magnetic induction lines are
initially attracted to the magnetic field imposed at
the blunt body walls and, close to the body, suffer
distortion, getting round the configuration. The
same behavior was observed in the respective
solutions obtained with the [9] scheme.

Figure 55 shows the —Cp distributions along the
blunt body wall. As can be seen, the shock captured
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by the [10] scheme employing the [11] dissipation
model is more severe than that obtained with the
[12] dissipation model, presenting a variation in the
Cp value between the nose and the rectilinear walls
of the blunt body bigger. Figure 56 presents the
distribution of the translational / rotational
temperature along the configuration symmetry line
or configuration stagnation line. As can be noted,
the dissipation models predict the same shock wave
positions.

-Cp

10F -Cp-JM - Azevedo
Fl - - -=- -Cp-JM - Mavriplis

T N Y T T R Y T N
X(m)
Figure 55 : -Cp distributions.
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Figure 56 : Shock position by the temperature profile.

7.2.6 Effects of the shock wave standoff distance
with the increase of the magnetic field vector (B,
component) to the inviscid simulations in two-
dimensions

To these studies, the [9] and the [10] schemes
employing the artificial dissipation operator of [11],
which has presented better characteristics of
pressure contour severity (-Cp distributions) and
shock wave standoff distance than the [12] model,
were analyzed. Variations of the B,. component
between values from 0.00T (without magnetic field
influence) until 0.55T, which has presented a
meaningful increase in the shock standoff distance,
were simulated.

Figures 57 and 58 exhibit the pressure contours
around the blunt body geometry, evaluated at the
computational domain, calculated by the [9] scheme
with the dissipation model of [11], to the two
extreme cases By = 0.00T and By = 0.55T. As can
be observed, Fig. 57 presents the shock very close to
the configuration nose. Figure 58, however, exhibits
a shock wave more detached from the configuration
nose, which leads to a temperature field less intense,
reducing the heating from the configuration nose.

Figure 59 and 60 show the rotational /
translational temperature contours around the blunt
body geometry, to the two extreme cases By, =
0.00T and By. = 0.55T. As can be observed, the
solution without the magnetic field presents a
normal shock attached to the configuration nose,
while the solution with the maximum value of By ..
presents a shock wave more detached from the blunt
body nose. Opposed to the expected behavior, the
temperature peak in this last solution (with magnetic
field different from zero) is bigger than the
respective temperature peak of the solution without
the influence of the magnetic field, which is
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unexpected because with bigger shock standoff
distance less the range of reached temperatures.
With it, the [9] scheme leads to an error in this
evaluation of the temperature field. By this analysis,
a heating of the configuration nose when submitted
to a magnetic field more intense happened, which is
incorrect.
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Figure 58 : Pressure contours (B, = 0,55T).

Figure 61 exhibits the pressure along the
stagnation line of the blunt body geometry. This
distribution serves to define the shock standoff
distance along the stagnation line. The graphic is
plotted with the non-dimensional pressures along
the stagnation line as function of the x coordinate
along the symmetry line. As can be observed, as the
increase of the B, ., intensity is bigger, bigger is the
shock standoff distance in relation to the non-
influence of the magnetic field. Table 2 exhibits the
shock standoff distance to each value of the By
component. It is possible to conclude from this table
that the biggest shock standoff distance occurs to the
maximum studied magnetic field, By, = 0.55T,
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corresponding to a distance of 2.40m. These
qualitative results accords with the literature: [23]-
[24].
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Figure 61 : Pressure distributions at the stagnation line.
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Table 2 : Values of normal shock standoff distance due to
variations in By - [9]

By,oc (T) Xshock (m)
0.00 1.50
0.05 1.52
0.15 1.53
0.25 1.59
0.35 1.61
0.45 1.93
0.55 2.40

Figures 62 and 63 exhibit the pressure contours
around the blunt body configuration, evaluated at
the computational domain, calculated by the [10]
scheme with the dissipation model of [11], to the
two extreme cases By, = 0.00T and By, = 0.55T.
As can be observed, Fig. 62 presents the shock
attached to the blunt body nose. Figure 63 shows the
shock more detached from the configuration nose,
which leads to a less intense temperature field,
reducing the heating at the nose.
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Figure 63 : Pressure contours (By ., = 0.55T).
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Figure 64 and 65 present the translational /
rotational temperature contours around the blunt
body geometry. As can be observed, the solution
without the influence of a magnetic field presents a
normal shock attached to the configuration nose,
while the solution with the maximum value of By
presents a shock more detached from the blunt body
nose. As expected behavior, the temperature peak in
the latter solution (with a magnetic field different
from zero) is less than the respective temperature
peak of the solution without the influence of a
magnetic field, which accords with the theory
because with bigger shock standoff distance, less the
temperature ranges reached by the flow. With it, the
[10] scheme presents the correct evaluation of the
temperature field. By this analyze, a reduction in the
heating of the configuration nose as submitted to a
magnetic field more intense is obtained.
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Figure 65 : Temperature contours (By., = 0.55T).
Figure 66 exhibits the pressure distribution along

the stagnation line of the blunt body geometry. This
distribution serves to define the shock standoff
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distance along the stagnation line. The graphic is
plotted with the non-dimensional pressures at the
stagnation line as function of the x coordinate along
the symmetry line. As can be observed, as the By
intensity increases, bigger shock standoff distance
occurs in relation to the condition of flow without
the magnetic field influence. Table 3 presents the
shock standoff distance to each value of By.. It is
possible to conclude from this table that the biggest
normal shock standoff distance occurs to the
maximum studied magnetic field of B,. = 0.55T,
corresponding to a distance of 2.22m. These
qualitative results accord to the literature: [23]-[24].
As can be observed, the [10] scheme employing
the artificial dissipation model of [11] has presented
the solutions more accurate and more consistent,
serving as the reference algorithm to this study.
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Figure 66 : Pressure distributions at the stagnation line.

Table 3 : Values of the normal shock standoff distance
due to variations in B ., - [10].

By,oo (T) Xshock (m)
0.00 1.90
0.05 1.88
0.15 1.85
0.25 1.90
0.35 1.91
0.45 2.10
0.55 2.22

7.2.7 Aerodynamic coefficients of lift and drag in
two-dimensions

Table 4 presents the aerodynamic coefficients of lift
and drag obtained by the blunt body problem, with
structured spatial discretization, to a formulation of
ideal gas submitted to the influence of a magnetic
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field in two-dimensions. These coefficients take into
account only the consideration of pressure term. The
contribution of the friction term was not considered.

Table 4 : Aerodynamic coefficients of lift and drag to the
blunt body structured problem submitted to a magnetic
field in two-dimensions.

Studied case CL Co
Inviscid/[9]/[12] -2.186x10" | 0.343
Viscous/[9]/[12] 1.080x10* | 0.481
Inviscid/[9]/[11] -3.498x10* | 0.367
Viscous/[9]/[11] 1.602x10* | 0.471
Inviscid/[10]/[12] 1.064x10" | 0.374
Viscous/[10]/[12] 9.262x10™" | 0.482
Inviscid/[10]/[11] 4.938x10™° | 0.371
Viscous/[10]/][11] -9.558x10™ | 0.475

To the blunt body problem, a symmetrical
configuration in relation to the x-axis, a zero value,
or close to it, to the lift coefficient is expected. The
solution closer to this result is due to the [10]
scheme, in inviscid flow, employing the artificial
dissipation model of [12]. In general, the solutions
with the [10] scheme, with both artificial dissipation
models, generate values of ¢, much smaller than the
respective ones obtained with the [9] scheme. The
maximum value of cp was obtained to the viscous
flow, employing the [10] numerical scheme with the
artificial dissipation provided by the [12] model.

Table 5 : Comparison between drag aerodynamic

coefficients.

Studied case Co Co

(without B) | (with B)
Inviscid/[9]/[12] 0.407 0.343
Viscous/[9]/[12] 0.461 0.481
Inviscid/[9]/[11] 0.414 0.367
Viscous/[9]/[11] 0.451 0.471
Inviscid/[10]/[12] 0.458 0.374
Inviscid/[10]/[11] 0.408 0.371
Viscous/[10]/[11] 0.452 0.475
Table 5 presents the drag aerodynamic

coefficient calculated without the influence of a
magnetic field and with the presence of a magnetic
field (B, = 0.15T). As can be observed, in the great
majority of the cases, the drag aerodynamic
coefficient calculated with the presence of the
magnetic field is inferior in value to the same
coefficient calculated without the presence of a
magnetic field. This behavior is expected and is
referred in the CFD literature: [8]. Only in the
viscous cases, the drag aerodynamic coefficient
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calculated with the presence of a magnetic field is
superior to the respective ones calculated without
the presence of a magnetic field. As mentioned, this
reduction in the value of the drag aerodynamic
coefficient, in the inviscid cases, contributes
considerable to the minimization of the heating in
reentry aerospace vehicles. The [12] model predicts
the shock wave at 0.85m ahead of the blunt body
nose, opposed to the other observed cases with the
[9] scheme and even with the [10] scheme (inviscid
case). The shock wave is positioned at 0.85m ahead
of the blunt body nose to both dissipation models.

7.3 Computational
studied algorithms
Table 6 presents the computational data of the
simulations with magnetic field influence over a
blunt body configuration in two-dimensions. The
table shows the studied cases, the CFL number of
the simulations, the iterations to convergence, the
orders of reduction in the magnitude of the
maximum residual in the field and the values of k,
and k, employed in each simulation. All cases
converged in four (4) orders of reduction of the
maximum residual. The distribution of the CFL
number was as follows: 0.5 in two cases (25.00%),
0.3 in two cases (25.00%), 0.2 in two cases
(25.00%) and 0.1 in two cases (25.00%). The
maximum number of iterations to convergence
reached less than 18,000 iterations, with the solution
of the [9] scheme employing the dissipation model
of [11].

performance of the

Table 6 : Computational data from the simulations with
magnetic field acting on a blunt body.

Studied | CFL | lterations | Residual | k,/ k4
case Drop
1991111 | 0.3 4,186 4 0.50/
0.01
Ve | 01 17,975 4 0.75/
0.01
1/[9)/[12] | 0.3 4,434 4 0.50/
0.01
VI9)/[12] 0.2 3,760 4 0.50/
0.01
I/[10)/[11] | 0.5 2,945 4 0.25/
0.01
VI[10J/[11] | 0.1 9,962 4 0.50/
0.01
1[10)/[12] | 0.5 2,400 4 0.25/
0.01
VI[10J/[12] | 0.2 3,797 4 0.25/
0.01
@: 1 = Inviscid; @: V = Viscous.
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In cases in which the [10] scheme was employed,
the number of iterations to convergence was inferior
to 10,000. The [9] scheme needed to employ the
value of 0.75 to the k, coefficient (stability in
presence of shock waves) in one case to obtain
convergence: viscous case with the dissipation
model of [11]. The [10] scheme did not need to use
the value 0.75 to k, coefficient. The maximum k;
coefficient used by the [10] scheme was 0.50, in the
viscous case with the dissipation model of [11]. It is
important to emphasize that all viscous simulations
were considered laminar, without the introduction of
a turbulence model, although a raised Reynolds
number was employed in the simulations.

Table 7 : Computational costs of the algorithms in the
cases of influence of the magnetic field.

Studied case Computational cost”

IIM/A 0.0000087
VIM/A 0.0000230
I/M/Mav 0.0000087
V/M/Mav 0.0000241
11IM/A 0.0000197
VIIM/A 0.0000580
11IM/Mav 0.0000202
V/IIM/Mav 0.0000569

@ Measured in seconds/per iteration/per computational cell.

Table 7 presents the computational costs of the
[9] and of [10] schemes in the formulation which
considers the influence of the magnetic field,
employing the artificial dissipation models of [11]
and of [12]. This cost is evaluated in seconds/per
iteration/per computational cell. The costs were
calculated employing a notebook with 2.13GHz of
clock and 1.0GBytes of RAM, in the Windows
Vista Starter environment. The cheapest algorithms
were the [9] scheme, in the inviscid simulation,
employing both artificial dissipation models, namely
[11] and [12], while the most expensive was the [10]
scheme, in the viscous simulation, employing the
artificial dissipation model of [12]. In relative
percentage terms, the former is 566.67% cheaper
than the latter. The [10] algorithms are more
expensive than the [9] algorithms because the
former calculates the flux at interfaces by
arithmetical average between the flux vectors, while
the latter employ the forward or backward values in
relation to the flux interface in each predictor or
corrector step, respectively, dismissing the average
calculations.

8 Conclusions
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The present work aimed to implement a
computational tool to simulation of inviscid and
viscous flows employing a magnetic field
formulation acting on a specific geometry. In this
study, the Euler and the Navier-Stokes equations
employing a finite volume formulation, following a
structured spatial discretization, were solved. The
aerospace problem of the hypersonic flow around a
blunt body geometry was simulated. A spatially
variable time step procedure is employed aiming to
accelerate the convergence of the numerical
schemes to the steady state solution. Effective gains
in terms of convergence acceleration are observed
with this technique ([13]-[14]).

The study with magnetic field employed the [9]
and the [10] algorithms to perform the numerical
experiments. The [10] scheme is calculated by
arithmetical average between the convective flux
vectors at the flux interface, opposed to the
arithmetical average between the conserved variable
vector. The viscous flux vectors are calculated by
arithmetical average of the conserved variables and
of the gradients. This procedure to the viscous
simulations is employed by the [9] and by the [10]
schemes. The results, mainly those obtained with
the [10] algorithm, are of good quality. In particular,
it was demonstrated the effect that the imposition of
a normal magnetic field in relation to the symmetry
line of a blunt body geometry could cause the
increase of the shock standoff distance, reducing,
hence, the aerodynamic heating. This effect is
important and can be explored in the phases of
aerospace vehicle project which does reentry in the
atmosphere normal to the earth magnetic field.
Another option would be the proper vehicle
generates an oscillatory electrical field to yield a
magnetic field in it and to induce the effect of the
increase of the shock standoff distance. These are
suggestions to verify.

In relation to the aerodynamic coefficient of lift
good values are obtained by the [10] scheme. In
relation to the drag aerodynamic coefficients, all the
inviscid solutions generated by the magnetic field
present values inferior to the respective ones
without magnetic field, according to the CFD
literature: [8].

The cheapest algorithms were the [9] scheme, in
the inviscid simulation, employing both artificial
dissipation models, namely [11] and [12], while the
most expensive was the [10] scheme, in the viscous
simulation, employing the artificial dissipation
model of [12]. In relative percentage terms, the
former is 566.67% cheaper than the latter. The [10]
algorithms are more expensive than the [9]
algorithms because the former calculates the
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inviscid flux at interfaces by arithmetical average
between the flux vectors, while the latter employ the
forward or backward values in relation to the flux
interface in each predictor or corrector step,
respectively, dismissing the average calculations.
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